

0277-5387(94)00358-0

COMMUNICATION

SYNTHESIS, ¹H AND ¹³C NMR CHARACTERIZATION OF METHYL-*MESO*-TETRA(4-PYRIDYL)-PORPHYRINATO THALLIUM(III): Tl(tpyp)CH₃

SUH-SHING TANG, MING-TORNG SHEU, YUN-HUIN LIN, I-CHIH LIU and JYH-HORUNG CHEN*

Department of Chemistry, National Chung-Hsing University, Taichung 40227, Taiwan

and

SHIN-SHIN WANG

Union Chemical Laboratories, Hsin-Chu 30034, Taiwan

(Received 5 August 1994; accepted 5 September 1994)

Abstract—The ¹³C resonance of the axial methyl group observed at 1.2 ppm (24°C) [with ${}^{1}J({}^{205}\text{Tl}{--}{}^{13}\text{C}) = 5752.3$ Hz and ${}^{1}J({}^{203}\text{Tl}{--}{}^{13}\text{C}) = 5703.3$ Hz] in CDCl₃ and a doublet with upfield resonance at -56.7 ppm by a solid-state ${}^{13}\text{C}$ CP/MAS NMR (at carbon frequency 50.33 MHz) measurement provide an evidence that the methyl group was coordinated to the Tl atom of methyl-*meso*-tetra(4-pyridyl)-porphyrinato thallium(III).

Henrick et al.¹ first reported the synthesis and X-ray structure of methyl-meso-tetraphenyl-porphyrinato thallium(III), Tl(tpp)CH₃. The methyl protons of the apical ligand were observed as a doublet with ${}^{2}J(TI-{}^{1}H) = 724+2$ Hz at $\delta = -3.49$ ppm in a CDCl₃ solvent. All other ¹³C signals except the axial methyl carbon in the porphyrin were clearly observed. They claimed that the solubility precluded observation of the ¹³C resonance owing to the CH₃—Tl. Recently, Sheu et al.² reported that the ¹³C resonance of the axial methyl group of Tl(tpp)CH₃ was observed at 0.4 ppm (24°C) [with $^{1}J(T)$ — ^{13}C) coupling constant 5774 Hz] in a CDCl₃ solvent. When the phenyl group was substituted by a pyridyl group, it became methyl-meso-tetra(4pyridyl)-porphyrinato thallium(III), Tl(tpyp)CH₃. The observation of the ¹³C resonance of the methyl ligand for this new and very similar complex is a challenging problem.

In this paper, the synthesis, the solution and solid-state ¹³C CP/MAS NMR spectroscopic studies of the new complex, $Tl(tpyp)CH_3$, are reported which provides evidence for the methyl group being coordinated to the Tl atom.

EXPERIMENTAL

Preparation of Tl(tpyp)CH₃

The compound Tl(tpyp)(OAc) (50 mg) was dissolved in tetrahydrofuran 30 cm³. A solution of methylmagnesium iodide, CH₃MgI, (≈ 0.23 mol) in ether was added and the mixture was stirred for 4 h at 0°C. The reaction mixture was hydrolyzed with 30 cm³ of water and extracted three times with methylene chloride (3×50 cm³). The organic layer was washed with water until neutrality and then dried over Na₂SO₄. After filtration, the organic solution was taken to dryness under reduced pres-

^{*} Author to whom correspondence should be addressed.

sure by rotary evaporation. The obtained product was recrystallized from CH_2Cl_2 -hexane yielding violet crystals (40.4 mg, 85%).

It was dissolved in CDCl₃ (99.8% from Aldrich) for NMR measurement at 24°C. ¹H NMR (shown in Fig. 1(a)): δ (ppm) -3.38 [d, CH₃—Tl, ²*J*(Tl—¹H) = 731.9 Hz], 8.04 (s, 2-H) and 8.27 (s, 2'-H), 8.94 (m, 3 and 3'-H) and 9.03 [d, β -H,

⁴*J*(Tl—¹H) = 4.4 Hz]. ¹³C NMR (shown in Fig. 2(a) and Table 1): δ (ppm) 1.2 [d, Tl—*CH₃, ¹*J*(Tl—¹³C) = 5750.8 Hz], 119.4 (m, C_{meso}), 129.5 (s, C₋₂ and C₋₂'), 132.2 (s, C_β), 148.2 (s, C₋₃ and C₋₃'), 149.5 (m, C_α), 150.4 (s, C₋₁). The MS (FAB): [*m*/*z*, assignment, rel. intensity (%)] 836 [M(²⁰⁵Tl)]⁺, 5.32), 837 ([M(²⁰⁵Tl)+H]⁺, 10.72), 821 ([M(²⁰⁵Tl)-CH₃]⁺, 7.21).

Fig. 1. 300 MHz ¹H NMR spectra in CDCl₃ at 24°C for (a) Tl(tpyp)CH₃ and (b) Tl(tpyp)¹³CH₃.

Communication

Fig. 2. 75.43 MHz 13 C broad band NMR spectra in CDCl₃ at 24°C for (a) Tl(tpyp)CH₃ and (b) Tl(tpyp) 13 CH₃.

Preparation of Tl(tpyp)—¹³CH₃

The ¹³C-enriched Tl(tpyp)¹³CH₃ was prepared by substituting CH₃MgI with ¹³CH₃MgI in the preparation of Tl(tpyp)CH₃ as described previously. ¹H

NMR (shown in Fig. 1(b)): δ (ppm) - 3.39 [dd, ¹³CH₃—Tl, ²J(Tl—¹H) = 731.3 Hz, ¹J(¹³C—¹H) = 142.4 Hz]. ¹³C NMR (shown in Fig. 2(b) and Table 1): δ (ppm) 1.2 [d, Tl—*¹³CH₃, ¹J(²⁰⁵Tl—¹³C) = 5752.3 Hz, ¹J(²⁰³Tl—¹³C) = 5703.3 Hz]. All

Medium and compound								Doublet	t (ppm)
(carbon frequency)	\mathbf{C}_{-1}	C,	$C_{-3}(C_{-3'})$	C_{β}	$C_{-2}(C_{-2'})$	\mathbf{C}_{meso}	TICH ₃	Downfield	Upfield
Solution									
(75.43 MHz)	150.4	149.5	148.2	132.2	129.5	119.4	$^{1.2}_{(^{205}\text{T}]-^{13}\text{C}} = 5750.8 \text{ Hz})$	39.28	- 36.96
Solution Tl(tpyp) ¹³ CH ₃							1.2 $(^{203}\text{Tl}-^{13}\text{C} = 5752.3 \text{ Hz})$	39.28	-36.98
(75.43 MHz)	150.4	149.5	148.2	132.2	129.5	119.4	$(^{205}\text{TI}-^{13}\text{C} = 5703.3 \text{ Hz})$	38.94	-36.67
Solid-state							Doublet with a		
Tl(tpyp)CH ₃ (50.33 MHz)		149.6 (singlet)	~	l (mu	32.5 ltiplet)	119.4 (singlet)	upfield resonance at - 56.7 ppm	I	- 56.7

Communication

other ¹H and ¹³C signals are similar to those reported for Tl(tpyp)CH₃ compound.

NMR spectra

¹H and ¹³C NMR spectra were recorded at 300 and 75.43 MHz, respectively, using a Varian VXR-300 spectrometer at 24°C. Solid-state ¹³C CP/MAS NMR spectra were recorded at 24°C at 50.33 MHz on a Bruker MSL-200 solid-state NMR spectrometer. Dry nitrogen gas was used to drive MAS rates of 2.5 kHz.

RESULTS AND DISCUSSION

Figure 2 shows the representative broad band 13 C spectra for Tl(tpyp)CH₃ and Tl(tpyp) 13 CH₃ in CDCl₃ solutions at 24°C. The ¹³C signal of ¹³CH₃ bonded to $Tl(tpyp)^{13}CH_3$ (shown in Fig. 2(b)) appears as two pairs of doublets at -36.98 and 39.28 ppm and -36.67 and 38.94 ppm for the outer and inner pairs, respectively. The outer pair arises from ²⁰⁵Tl-¹³C coupling (5752.3 Hz) and the inner one from ${}^{1}J({}^{203}\text{Tl}{-}{}^{13}\text{C})$ (5703.3 Hz). This is confirmed by noting that ${}^{1}J({}^{205}Tl-{}^{13}C)/$ ${}^{1}J({}^{203}\text{Tl}{-}{}^{13}\text{C}) = 1.0086$, which is quite close to the theoretical value calculated from $\gamma(^{205}\text{Tl})/\gamma(^{203}\text{Tl}) =$ 1.0098. The outer pair shown in Fig. 2(b) is similar to the axial methyl carbon bonded to Tl(tpyp)CH₃ (shown in Fig. 2(a)), appearing as a doublet at -36.96 and 39.28 ppm with ${}^{1}J({}^{205}Tl-{}^{13}C)$ coupling constant 5750.8 Hz.

The CP/MAS ¹³C solid-state NMR spectra of Tl(tpyp)CH₃ is shown in Fig. 3 and Table 1. The major resonance of the CH₃ bonded to Tl(tpyp)CH₃ is observed as a doublet with an upfield resonance at -56.70 ppm and it is difficult to detect the downfield resonance.

By substituting $\delta = 1.2$ ppm and ${}^{1}J({}^{205}\text{Tl} ^{13}$ C) = 5751.6 Hz,³ obtained from the axial methyl carbon of Tl(tpyp)CH₃ (shown in Fig. 2), into $1.2 \pm [5751.6/(2 \times 50.33)]$, the calculated doublet for the methyl carbon with a 50.33 MHz (carbon) frequency turned out to be -56.0 and 58.3 ppm in the solid-state ¹³C CP/MAS NMR measurement. The calculated resonance at -56.0 ppm is quite close to the observed one at -56.7 ppm.

In summary, the solution ${}^{13}C$ of CH₃ bonded to Tl(tpyp)CH₃ appears as a doublet at 39.28 and -36.96 ppm (with 75.43 MHz frequency) and the solid-state ¹³C CP/MAS NMR indicates the same doublet at 58.3 (calculated) and -56.7 ppm (with 50.33 MHz frequency) providing evidence that the methyl ligand is axially coordinated to the Tl atom.

Fig. 3. High-resolution solid-state ¹³C CP/MAS spectrum of Tl(tpyp)CH₃ at 50.33 MHz with spinning rate of 2.5 kHz at 24°C. Assignments : singlet at 149.6 ppm, C_{-1} , C_{α} , C_{-3} ($C_{-3'}$); multiplet at 132.5 ppm, C_{β} , C_{-2} ($C_{-2'}$); singlet at 119.4 ppm, C_{meso} ; doublet at 58.3 (calculated), -56.70 ppm, Tl—CH₃. Spinning sidebands are labelled with an asterisk (*).

Acknowledgements—Financial support from the National Research Councils of the R.O.C. under Grant NSC-83-0208-M005-032 is gratefully acknowledged. The authors wish to thank Miss Suh-Yun Fang (Hsin-Chu Major Instrumental Centre) for the help in measuring the solid-state ¹³C CP/MAS spectrum with a Bruker MSL-200 solid-state NMR spectrometer.

REFERENCES

- 1. K. Henrick, R. W. Matthews and P. A. Tasker, *Inorg. Chem.* 1977, 16, 3293.
- M. T. Sheu, Y. H. Lin, S. S. Tang, J. H. Chen and S. S. Wang, submitted for publication.
- 3. 5751.6 Hz was calculated by $1/2(5750.8 \pm 5752.3)$ from the data shown in Table 1.